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A highly regioselective radical addition of N,N-dichlorobenzenesulfonamide (dichloramine-B) to
1l-alkenes is achieved at —78 °C by the use of triethylborane as a radical initiator. The reaction of
1,3-dienes with N,N-dichlorosulfonamide in the presence of Et;B regioselectively provides N-chloro-
N-allylamide derivatives. N-Chloro-N-allylamides thus obtained react with a variety of alkenes to
furnish pyrrolidine derivatives in good yields. A radical annulation reaction among N,N-
dichlorosulfonamide, 1,3-dienes, and alkenes has been developed.

Introduction

N-Chlorosulfonamides and related compounds are
inexpensive N1 sources that allow efficient introduction
of nitrogen with a variety of unsaturated molecules,
providing important compounds such as aziridines and
hydroxylamine derivatives.! However, utility of N,N-
dichlorosulfonamides in organic synthesis is limited so
far. N,N-Dichlorosulfonamides are known to yield ad-
ducts readily in the reaction with alkenes.? The reaction
with 1-alkenes generally affords a regioisomeric mixture
of anti-Markovnikov and Markovnikov adducts.?*f The
failure in regiocontrol is mainly due to the mixed reaction
pathways where both radical and cationic species such

* To whom correspondence should be addressed. Phone: +81-75-
753-5523. Fax: +81-75-753-4863.
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as CI*, CI*, and *N(CI)SOzR are involved (Scheme 1).2 The
thermally or photochemically induced addition increases
the selectivity for the anti-Markovnikov adduct. However,
the selectivity is not necessarily satisfactory. Further-
more, a prolonged reaction time leads to undesirable
reactions such as rearrangement or further addition
reactions of the initial 1:1 adducts. Thus, the efficient
regioselective addition of N,N-dichlorosulfonamides to
1-alkenes has not been addressed so far.

We envisaged that N,N-dichlorobenzenesulfonamide
(dichloramine-B)* would serve as a nitrogen diradical
equivalent to allow two-directional and sequential carbon—
nitrogen bond formations (Scheme 2). Thus, we have
investigated the regiocontrol in the addition of N,N-
dichlorobenzenesulfonamide (1) to 1-alkenes. Here we

(3) For reviews on N-centered radicals, see: (a) Fallis, A. G.; Brinza,
1. M. Tetrahedron 1997, 53, 17543. (b) Neale, R. S. Synthesis, 1971, 1.
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Chem. 1993, 58, 1. (f) Stella, L. In Radicals in Organic Synthesis;
Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001; Vol. 2,
Chapter 5.1, p 407.

(4) N,N-Dichlorobenzenesulfonamide is commercially available from
TCI.
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TABLE 1. Addition of N,N-Dichlorobenzenesulfonamide
to 1-Hexene

¢ Cl l-\Bs
BSNCI2 + 2N BsN + al
1 C4H9 nC4H9 \)\nCA,Hg
2 3
equiv  equiv of combined

entry ofl 1-hexene conditions yield2 (%)  2/3

10 15 1.0 benzene 95 62/38
rt

20 1.5 1.0 benzene 96 71/29
Et3B (5 mol %)
rt

3p 1.5 1.0 toluene 45 62/38
—-78°C

4b 1.5 1.0 toluene 71 87/13
Et3B (5 mol %)
—-78 °C

5¢ 1.0 3.0 toluene 98 >95/5
Et3B (5 mol %)
—-78 °C

aNMR vyield with dibenzyl ether as an internal standard.
b Reaction conditions: 1 (1.5 mmol), 1-hexene (1.0 mmol), toluene
or benzene (4 mL), 3 h. ¢Reaction conditions: 1 (1.0 mmol),
1-hexene (3.0 mmol), toluene (7 mL), 3 h.

wish to report a EtzB-initiated regioselective addition of
N,N-dichlorobenzenesulfonamide to various carbon—
carbon double bonds. Radical annulation® of 1 with 1,3-
dienes and alkenes to provide pyrrolidine derivatives is
also described.

Results and Discussion

(1) EtzB-Induced Addition of N,N-Dichloroben-
zenesulfonamide to 1-Alkenes. The regioselectivity
observed in the addition of N,N-dichlorobenzenesulfona-
mide (1) to 1-alkenes was examined with 1-hexene as the
1l-alkene. The results under a variety of conditions are
listed in Table 1. The use of 1.5 equiv of 1 to 1-hexene in
benzene at room temperature provided a mixture of anti-
Markovnikov 2 and Markovnikov adduct 3 along with
other products (entries 1 and 2). The reaction in toluene
at —78 °C proceeded cleanly and yielded only a mixture
of 2 and 3 (entries 3 and 4). However, the regioselectivity
was still not sufficient. Although the addition took place
without Et3B as a radical initiator, the presence of Et;B
enhanced the reactivity and the regioselectivity.® When
an excess of 1-hexene (3.0 equiv) was employed in the
presence of Et3B in toluene at —78 °C, anti-Markovnikov
adduct 2 was obtained in good yield as a sole product

(5) For examples of radical annulation with carbon-centered radicals,
see: (a) Cekovic, Z.; Saicic, R. Tetrahedron Lett. 1986, 27, 5893. (b)
Barton, D. H. R.; Zard, S. Z.; da Silva, E. J. Chem. Soc., Chem.
Commun. 1988, 285. (c) Curran, D. P.; Chen, M.-H. J. Am. Chem. Soc.
1987, 109, 6558. (d) Curran, D. P.; Chen, M.-H.; Spletzer, E.; Seong,
C. M.; Chang, C.-T. J. Am. Chem. Soc. 1987, 111, 8872. (e) Feldman,
K. S.; Romanelli, A. L.; Ruckle, R. E., Jr.; Miller, R. F. 3. Am. Chem.
Soc. 1988, 110, 3300. (f) Miura, K.; Fugami, K.; Oshima, K.; Utimoto,
K. Tetrahedron Lett. 1988, 29, 5135. (g) Curran, D. P.; van Elburg, P.
A. Tetrahedron Lett. 1989, 30, 2501. (h) Kitagawa, O.; Yamada, Y.
Fujiwara, H.; Taguchi, T. J. Org. Chem. 2002, 67, 922. (i) Kitagawa,
0O.; Yamada, Y. Sugawara, A.; Taguchi, T. Org. Lett. 2002, 4, 1011.

(6) For reviews on Et3B as a radical initiator, see: (a) Ollivier, C;
Renaud, P. Chem. Rev. 2001, 101, 3415. (b) Yorimitsu, H.; Oshima, K.
In Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-
VCH: Weinheim, 2001; Vol. 1, Chapter 1.2, p 11. (c) Yorimitsu, H.;
Shinokubo, H.; Oshima, K. Synlett 2002, 674.
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(entry 5). The use of hexane as the solvent afforded a
poor result because of the low solubility of 1 in hexane.
The reaction in THF or ether resulted in formation of
byproducts bearing a tetrahydrofuranyl or 1-ethoxyethyl
groups, respectively. In these cases, an N-centered radical
from 1 abstracts hydrogen at the o-position of the ether
linkage.

Having optimized reaction conditions of the regiose-
lective addition of 1, we then investigated exploitation
of the product 2, which has still one N—CI bond, as a
nitrogen-centered radical precursor.” The reaction of 2
with styrene (2.0 equiv) and 2-ethyl-1-butene (9.0 equiv)
in the presence of Et3B furnished the corresponding
adduct in good yields with high regioselectivity via a
chlorine atom transfer radical process (Scheme 3).8 Ethyl
vinyl ether (2.0 equiv) afforded a-amino aldehyde 4c in
good vyield, which probably resulted from hydrolysis of
the initial adduct 5 (a-chloro ether). Although the hy-
drogen abstraction with a N-centered radical can be
problematic in the intermolecular reaction, such side
reactions are much slower than the addition reaction in
these cases.

(2) EtzB-Induced Addition of N,N-Dichloroben-
zenesulfonamide to 1,3-Dienes. With an efficient
protocol of 1 as a nitrogen diradical equivalent in hand,
we then attempted to synthesize pyrrolidine derivatives
via three-component radical coupling reaction. Recently,

(7) For intermolecular addition of N-centered radicals to alkenes,
see: (a) Newcomb, M.; Kumar, M. U. Tetrahedron Lett. 1990, 31, 1675.
(b) Nagao, Y.; Katagiri, S. Chem. Lett. 1992, 2379. (c) Goosen, A,
McCleland, C. W.; Merrifield, A. J. 3. Chem. Soc., Perkin Trans. 1 1992,
627.

(8) For reviews on atom transfer radical reactions, see: (a) Byers,
J. In Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.;
Wiley-VCH: Weinheim, 2001; Vol. 1, Chapter 1.5, p 72. (b) Curran,
D. P.; Chen, M.-H.; Kim, D. 3. Am. Chem. Soc. 1986, 108, 2489. (c)
Curran, D. P. Synthesis 1988, 417; 489.
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TABLE 2. Radical Addition of Dichloramine to
1,3-Dienes?

- (5 mol%)
BSNCl, + EtaB g moR
) 2 N\Rz BSN\)\)\CI
6
(Bs = PhSO,)
entry dienes product yield (%)
ICI
1 G BSN. g 95
6a
(I;I\)\/\
2 o BN A~ 89
6b
Cl Cl
3 A MCoHye BsN_~ A 90
n-CgH1g
6¢c
(|3I Cl
=
4 ATHES BSNW o7
(;'}I
6e
(IDI Cl
6 Mph BSNMPh 74
6f

COMe %
70 /\d\ BsN S COz2Me 39
= COoMe 69 | COMe

a2 N,N-Dichlorobenzenesulfonamide (1.0 mmol), 1,3-dienes (1.5—
2.0 mmol), EtzB (0.05 mmol), toluene, —78 °C, 30 min to 1 h.
b Benzene, rt, 3 h.

Taguchi et al. and we have independently reported
radical [3 + 2] annulation strategy that exploits an
N-allylsulfonamidyl radical as a key intermediate.® As
depicted in Scheme 4, the reaction of 1,3-dienes with 1
in a 1,4-addition manner provides N-allyl-N-chloroben-
zenesulfonamides 6, which further react with alkenes to
furnish pyrrolidine derivatives 8 via a radical addition—
cyclization sequence. The N-centered radical from 6
undergoes the intermolecular addition toward an alkene
to form an alkyl radical 7. The subsequent 5-exo radical
cyclization proceeds to yield the cyclized product 8 via a
chlorine atom transfer process.

Daniher and Butler reported the predominant mode
of the addition of N,N-dichlorosulfonamides toward 1,3-
dienes is 1,4-fashion with a selectivity of >95%.2' How-
ever, they examined only 1,3-butadiene and chloroprene
as a substrate. Consequently, we reinvestigated the
reaction of 1 with various 1,3-dienes with Et;B as a
radical initiator.

(9) (a) Tsuritani, T.; Shinokubo, H.; Oshima, K.Org. Lett. 2001, 3,
2709. (b) Kitagawa, O.; Yamada, Y.; Fujiwara, H.; Taguchi, T. Angew.
Chem., Int. Ed. 2001, 40, 3865.
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TABLE 3. Radical Annulation with Styrene2

Cl
1 % 1
cl R' R? PR (OEZ%,I/) &KVRZ
+ ZPh
BsN . BsN
\)s\/kol benzene,r. t. ° prC 8
ield
entry 6 product )E%)
Cl
Cl
Ph
Cl
Cl
BsN(fy 8b 52
2 6b Ph
Ph
Cl
n-CoHig
Ph
Cl
=
4 6d BeN A 8d 70
Cl
Ph
5 6e — 8e -
SO oM

Ph

a8 N-Chlorosulfonamide (6, 0.5 mmol), styrene (1.0—1.5 mmol),
EtsB (0.05 mmol), benzene, rt, 3 h.

Treatment of 1,3-alkadienes with 1 exclusively pro-
vides the 1,4-adducts, 4-chloro-2-butenylamides 6, in good
yields (Table 2). None of the 1,2-addition products could
be detected in the crude reaction mixture. However, the
use of 1-phenyl-1,3-butadiene yielded the 1,2-adduct 6f
predominantly. The reaction tolerates the presence of
nonconjugated alkenes in the substrate (entry 4). Cyclic
dienes such as 1,3-cyclooctadiene also yields 1,4-adduct
6e (entry 5). The use of a vinylcyclopropane as a
substrate provided a ring opening adduct 6g in moderate
yield (entry 7).

(3) Radical Annulation with N-Chlorosulfona-
mide. The study on radical annulation was commenced
with the reaction of 6 with styrene (Table 3). Treatment
of a mixture of 6 and styrene with 10 mol % of Et3B in
benzene yielded the cyclized products 8 in modest to good
yields at room temperature. A terminal alkenyl moiety
of 6d survived under the reaction conditions, and no
addition of the N-centered radical to the alkene occurred
(entry 4). Unfortunately, cyclic N-chloroamide 6e pro-
vided none of the cyclized product, and only the reduction
product, 4-chlorocyclooct-2-en-1-ylsulfonamide 8e, was
obtained (entry 5). N-Chloroamide 6g derived via ring
opening of cyclopropane also afforded annulation adduct
8g in 87% yield. In the reaction with 6b, dechlorination
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TABLE 4. Radical Annulation with Various Alkenes?

(10 mol%) cl
° Cl
Bs’\lcil F R e EtsB Be
\/GE/\CI benzene, r. t R2 8
R1
entry alkene product yield (%)
Cl
1 _~~_SiMe fc' 8h 84
BsN "
SiMe3
Cl
|
2 BsN 8i 90
Cl
Cl
3 N BsN 8j 86
Ph
Cl
|
4° P nCaHg BsN (:i\/c 8k 62
'C4H9
Cl
< 81 44
: BsN Bt
5t t Et
Et
SN
BsN Et 91 30
Et
Cl
Cl
6 {;@ BsN 8Sm 80
(o]
Cl
< 8 60
n
BsN Ph
7 Pe
Ph
X
Cl
Cl
BsN j\/ 8o 72
OEt
c \
8 A OEt BsN 90 12
OEt
Cl
BN 2T 100 12
\_-CHO

a Reactions employed 6a (0.5 mmol) and alkene (1.0—1.5 mmol)
in benzene (4.0 mL) in the presence of EtzB (0.05 mmol) unless
otherwise noted. The reaction mixture was stirred for 3 h at room
temperature. ® An excess amount of alkenes (9.0 equiv) was
employed. ¢ The reaction employed 25 mL of benzene under
otherwise the same reaction conditions.
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TABLE 5. Conversion of Vicinal Dichlorides to
Alkenes?

Cl R!

1
R R2  TiCly/LiAlH, N R?
B BsN
sN or
Y % o), Ao R o
A n(Cu), Ac! R4
entry dichloride method product )?t% ()j Ratio
X
1 8a A BsNCf\ 9a 81 74126
Ph
2 8b B BSN(f\ 9b 54 8713
Ph
X n-CgH1g
3 8¢ A BsN/\:L/V 9¢ 71 >95/5
Ph
BN =
4 8d A BsN s 9d 56 >95/5
Ph
5 8h B BSN/\:G 9h 86 53/47
SiMeg
R
BsN
6 8i B Eb 9i 84 56/44
X
7 8j B BsN 9j 74 T723"c
H Ph
X
8 8k A BSN(I\ 9k 66 N.D.*
-C4Hg
X
9 8l B BsN Et 91 89 -
Et
X
BsN
10 8m B 9m 66 56/44
(o]
X
11 8n B BsN Ph 9n 68 72/28°¢
X
12 8o B BsN/\:(\ 90 85 78/22
OFt

a8 Reactions conditions: Conditions A: TiCls (1.2—2.0 equiv),
LiAIH4 (1.2—2.0 equiv), THF reflux. Conditions B: Zn(Cu) (20
equiv), AcOH, reflux. b trans/cis. ¢ The stereochemistry was as-
signed on the basis of NOE difference experiments. 9 The stereo-
selectivity could not be determined.

product 9b was also obtained in 9% yield (entry 2). The
formation of olefin 9 can be attributed to fragmentation
of the cyclized radical via elimination of chlorine radical
in the case of slow abstraction of chlorine from 6 due to
steric reasons (Scheme 5).%0

We then investigated the radical annulation reaction
with a variety of alkenes (Table 4). Aromatic alkenes
other than styrene yielded the corresponding pyrrolidine
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SCHEME 5
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derivatives 8 in good to excellent yields with 2.0—-3.0
equiv of alkenes. On the other hand, the reaction with
aliphatic alkenes as a radical acceptor requires the use
of a large excess (9.0 equiv) of the alkene. Although
indene is a good hydrogen donor toward radical species,
the radical addition-cyclization sequence is much faster
than the hydrogen abstraction reaction with the N-
centered radical derived from 6a (entry 2). Ethyl vinyl
ether was also a good partner in this radical annulation
reaction (entry 8). Interestingly, cyclic alkenes such as
indene and benzofuran provided the corresponding tri-
cyclic compounds 8i and 8m in excellent yields (entries
2 and 6). A minor amount of alkenyl byproducts 9 was
formed in addition to vicinal dichlorides when the reac-
tion employed 1,1-disubstituted alkenes or vinyl ether
as a substrate (entries 5, 7, and 8).

As a result of the presence of many stereocenters,
analysis of the cyclized products 8 with NMR was quite
difficult, and the isomeric ratio could not be determined.
Conversion of vicinal dichloride 8 into alkenes 9 would
simplify the spectrum of the products. Moreover, intro-
duction of the alkenyl moiety is also beneficial for further
functionalization of the pyrrolidine derivatives obtained
with the present protocol. Dechlorination of 8 was suc-
cessfully achieved upon treatment with either a low
valent titanium reagent (TiCl,—LiAlH,) in THF (Method
A) or a zinc—copper couple in refluxing acetic acid
(Method B) (Table 5).1%

Finally, we conducted this radical [2 + 2 + 1] annu-
lation reaction among N,N-dichlorosulfonamide, 1,3-
butadiene, and alkenes in a one-pot operation (Scheme

(10) p-Elimination of chlorine radical is significantly slower than
chlorine abstraction. The addition of N,N-dichlorosulfonamide to allyl
chloride was reported to provide a vicinal dichloride. See ref 2h.

(11) (a) Olah, G. A.; Prakash, G. K. S. Synthesis 1976, 607. (b)
Handa, S.; Earlam, G. J.; Geary, P. J.; Hawes, J. E.; Phillips, G. T ;
Pryce, R. J.; Ryback, G. Shears, J. H. 3. Chem. Soc., Perkin Trans. 1
1994, 1885.
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SCHEME 6
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6). To a mixture of N,N-dichlorobenzenesulfonamide and
1,3-butadiene (2.0 equiv) in toluene was added a hexane
solution of Et;B at —78 °C. After stirring for 1 h at —78
°C, the reaction mixture was warmed to room tempera-
ture, and excess 1,3-butadiene was removed under
reduced pressure. An addition of alkenes such as styrene,
allyltrimethylsilane, or indene, followed by a solution of
Et;B at room temperature eventually furnished the
desired pyrrolidine derivatives in excellent overall yields.

Conclusion

In the reaction of N,N-dichlorobenzenesulfonamide
with 1-hexene, complete regioselection for anti-Mark-
ovnikov addition has achieved by using Et;B as a radical
initiator at —78 °C. The obtained product can be further
utilized as a nitrogen-centered radical precursor. This
protocol is applicable to construct pyrrolidine derivatives
via a radical annulation reaction by taking advantage of
regioselective 1,4-addition of N,N-dichlorosulfonamide to
1,3-dienes. This facile protocol provides an easy access
to nitrogen heterocycles from 1,3-dienes and alkenes,
demonstrating the utility of N,N-dichlorosulfonamide as
a nitrogen diradical equivalent.

Acknowledgment. This work was supported by a
Grant-in-Aid for Scientific Research on Priority Areas
(no. 412: Exploitation of Multi-Element Cyclic Mol-
ecules) from the Ministry of Education, Culture, Sports,
Science, and Technology, Japan.

Supporting Information Available: General procedures
and spectral data for compounds. This material is available
free of charge via the Internet at http://pubs.acs.org.

JO034043K



